Roll No. \qquad

BT-4/M-20
 SIGNALS AND SYSTEMS

EE-208E
Time : Three Hours]
[Maximum Marks: 100
Note Attemptive questions in all, selecting atneeast question from each Section. All questions carry equal marks. Assume missing data if any. Symbols have their usual meanings.

Section I

1. (a) Describe a signal and differentiate the following :
(i) fleterministic and Stochastic Signal
(ii) Periodic and aperiodic signal
(fii) Analog and discrete signal.
8
(6) Compute Fourier series for the waveform shown in Fig. 1. Plot its magnitude and phase sectrum.

(3)L-34011 1
(c) Represent the sigutatalshown in Fig. 2 as a linear combination of standard test signals. 4

2. (a) Let $x(t)=u(t-3) t(t-5)$ andol $t)=e^{-3 t} u(t)$. Comput $\not(t)=x(t) * h(t)$.

10

(b) Find the response of the discrete time system with unit impulseresponseh(n)= $21^{3}{ }^{3}$ |t the $\operatorname{inghe}(n)=123$. 5
(c) DetermineFourier transform of the signal $1+\cos 6 x+\frac{x}{8} \frac{x}{3}$ 5

Section II

3. (a) State and prove sampling theorem. Also explain its physicalsignificance. 12
(3)L-34011
(b) Determine the continuous time signal corresponding to the following transform :

8

4. (a) Define random variable. How its pdf and cdf are computed ? Explain by giving physical significance of each.

12
(b) If $X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}$. Obtainits inverse z-transform fiat $>1|z|<0.5,0.5 \mid z K<18$

Section III

5. What do you understand by a linear system ? Explain in detail featyos and working of SISO, SIMO, MISO and MIMO wha suitable examples.
6. (a) fetermine whether the given system $y(t)=x(t-2)+x(2-t)$ holds the following propertiefor input $x(t)$ and output $y(t)$ with justification
(i) Memoryless
(ii) Time-invariant
(iii) Linear
(iv) Causal
(v) Stable.
(3)L-34011
(b) In a causal LTI system, input and output are related by the difference equaltion $\frac{1}{2} y(n-1)+x(n)$.
Determinge n) forx(n) $=(h-2)$.

Section IV

7. Obtain complete response of an electromechanical system described by differential eqwation $2 y=f(t)$ using state variable method for the drivif($(\mathrm{y}$ for (t) e and initial conditioy $(\Delta)=0, y\left(0^{+}\right)=1$.
8. (a) Obtainimpulserespons๓f a causallTI system characterized by the difference equation

$$
\begin{equation*}
y[n]-\frac{1}{2} y[n-1]=x[n]+\frac{1}{2} x[n-1] . \tag{10}
\end{equation*}
$$

(b) Detghnine differential equation for the causal LTI sofstem shown in the Fig 3. relating xits input and outpy(t).

(3)L-34011

4

